3.1132 \(\int \frac{\cos (c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx\)

Optimal. Leaf size=158 \[ \frac{6 b \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^4 d}-\frac{\left (a^2-b^2\right ) \cos (c+d x)}{a^3 d (a+b \sin (c+d x))}+\frac{3 \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{2 b \cot (c+d x)}{a^3 d}-\frac{\cos (c+d x)}{2 a^2 d \left (1-\cos ^2(c+d x)\right )} \]

[Out]

(6*b*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*d) + (3*(a^2 - 2*b^2)*ArcTanh[Cos[
c + d*x]])/(2*a^4*d) - Cos[c + d*x]/(2*a^2*d*(1 - Cos[c + d*x]^2)) + (2*b*Cot[c + d*x])/(a^3*d) - ((a^2 - b^2)
*Cos[c + d*x])/(a^3*d*(a + b*Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.449638, antiderivative size = 180, normalized size of antiderivative = 1.14, number of steps used = 7, number of rules used = 7, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.259, Rules used = {2890, 3055, 3001, 3770, 2660, 618, 204} \[ \frac{6 b \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{a^4 d}-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{3 \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + b*Sin[c + d*x])^2,x]

[Out]

(6*b*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(a^4*d) + (3*(a^2 - 2*b^2)*ArcTanh[Cos[
c + d*x]])/(2*a^4*d) - ((a^2 - 3*b^2)*Cot[c + d*x])/(a^3*b*d) + ((2*a^2 - 3*b^2)*Cot[c + d*x])/(2*a^2*b*d*(a +
 b*Sin[c + d*x])) - (Cot[c + d*x]*Csc[c + d*x])/(2*a*d*(a + b*Sin[c + d*x]))

Rule 2890

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1))/(a*d*f*(n + 1)), x] +
 (Dist[1/(a^2*b*d*(n + 1)*(m + 1)), Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 1)*Simp[a^2*(n + 1)
*(n + 2) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 1)*Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m
+ n + 4))*Sin[e + f*x]^2, x], x], x] - Simp[((a^2*(n + 1) - b^2*(m + n + 2))*Cos[e + f*x]*(d*Sin[e + f*x])^(n
+ 2)*(a + b*Sin[e + f*x])^(m + 1))/(a^2*b*d^2*f*(n + 1)*(m + 1)), x]) /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2
- b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && LtQ[n, -1]

Rule 3055

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e +
 f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b
*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*(b*
c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&
  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3001

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] + Dist[(B*c - A
*d)/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \cot ^3(c+d x)}{(a+b \sin (c+d x))^2} \, dx &=\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}+\frac{\int \frac{\csc ^2(c+d x) \left (2 \left (a^2-3 b^2\right )-a b \sin (c+d x)+3 b^2 \sin ^2(c+d x)\right )}{a+b \sin (c+d x)} \, dx}{2 a^2 b}\\ &=-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}+\frac{\int \frac{\csc (c+d x) \left (-3 b \left (a^2-2 b^2\right )+3 a b^2 \sin (c+d x)\right )}{a+b \sin (c+d x)} \, dx}{2 a^3 b}\\ &=-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}-\frac{\left (3 \left (a^2-2 b^2\right )\right ) \int \csc (c+d x) \, dx}{2 a^4}+\frac{\left (3 b \left (a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{a^4}\\ &=\frac{3 \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}+\frac{\left (6 b \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=\frac{3 \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}-\frac{\left (12 b \left (a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{a^4 d}\\ &=\frac{6 b \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{a^4 d}+\frac{3 \left (a^2-2 b^2\right ) \tanh ^{-1}(\cos (c+d x))}{2 a^4 d}-\frac{\left (a^2-3 b^2\right ) \cot (c+d x)}{a^3 b d}+\frac{\left (2 a^2-3 b^2\right ) \cot (c+d x)}{2 a^2 b d (a+b \sin (c+d x))}-\frac{\cot (c+d x) \csc (c+d x)}{2 a d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [A]  time = 4.16124, size = 191, normalized size = 1.21 \[ \frac{48 b \sqrt{a^2-b^2} \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )-12 \left (a^2-2 b^2\right ) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+12 \left (a^2-2 b^2\right ) \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )+\frac{8 a \left (b^2-a^2\right ) \cos (c+d x)}{a+b \sin (c+d x)}-a^2 \csc ^2\left (\frac{1}{2} (c+d x)\right )+a^2 \sec ^2\left (\frac{1}{2} (c+d x)\right )-8 a b \tan \left (\frac{1}{2} (c+d x)\right )+8 a b \cot \left (\frac{1}{2} (c+d x)\right )}{8 a^4 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^3)/(a + b*Sin[c + d*x])^2,x]

[Out]

(48*b*Sqrt[a^2 - b^2]*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]] + 8*a*b*Cot[(c + d*x)/2] - a^2*Csc[(c +
 d*x)/2]^2 + 12*(a^2 - 2*b^2)*Log[Cos[(c + d*x)/2]] - 12*(a^2 - 2*b^2)*Log[Sin[(c + d*x)/2]] + a^2*Sec[(c + d*
x)/2]^2 + (8*a*(-a^2 + b^2)*Cos[c + d*x])/(a + b*Sin[c + d*x]) - 8*a*b*Tan[(c + d*x)/2])/(8*a^4*d)

________________________________________________________________________________________

Maple [B]  time = 0.171, size = 339, normalized size = 2.2 \begin{align*}{\frac{1}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{b}{d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }-2\,{\frac{\tan \left ( 1/2\,dx+c/2 \right ) b}{d{a}^{2} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+2\,{\frac{{b}^{3}\tan \left ( 1/2\,dx+c/2 \right ) }{d{a}^{4} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}-2\,{\frac{1}{da \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+2\,{\frac{{b}^{2}}{d{a}^{3} \left ( \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}a+2\,\tan \left ( 1/2\,dx+c/2 \right ) b+a \right ) }}+6\,{\frac{b\sqrt{{a}^{2}-{b}^{2}}}{d{a}^{4}}\arctan \left ( 1/2\,{\frac{2\,a\tan \left ( 1/2\,dx+c/2 \right ) +2\,b}{\sqrt{{a}^{2}-{b}^{2}}}} \right ) }-{\frac{1}{8\,d{a}^{2}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}-{\frac{3}{2\,d{a}^{2}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) }+3\,{\frac{\ln \left ( \tan \left ( 1/2\,dx+c/2 \right ) \right ){b}^{2}}{d{a}^{4}}}+{\frac{b}{d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x)

[Out]

1/8/d/a^2*tan(1/2*d*x+1/2*c)^2-1/d/a^3*tan(1/2*d*x+1/2*c)*b-2/d/a^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*
c)*b+a)*tan(1/2*d*x+1/2*c)*b+2/d*b^3/a^4/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)*tan(1/2*d*x+1/2*c)-
2/d/a/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)+2/d/a^3/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b
+a)*b^2+6/d/a^4*b*(a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))-1/8/d/a^2/tan(1/2*d
*x+1/2*c)^2-3/2/d/a^2*ln(tan(1/2*d*x+1/2*c))+3/d/a^4*ln(tan(1/2*d*x+1/2*c))*b^2+1/d*b/a^3/tan(1/2*d*x+1/2*c)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.61294, size = 1891, normalized size = 11.97 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

[-1/4*(6*a^2*b*cos(d*x + c)*sin(d*x + c) + 4*(a^3 - 3*a*b^2)*cos(d*x + c)^3 - 6*(a*b*cos(d*x + c)^2 - a*b + (b
^2*cos(d*x + c)^2 - b^2)*sin(d*x + c))*sqrt(-a^2 + b^2)*log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c
) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b
*sin(d*x + c) - a^2 - b^2)) - 6*(a^3 - 2*a*b^2)*cos(d*x + c) + 3*(a^3 - 2*a*b^2 - (a^3 - 2*a*b^2)*cos(d*x + c)
^2 + (a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 3*(a^3 - 2*a
*b^2 - (a^3 - 2*a*b^2)*cos(d*x + c)^2 + (a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*sin(d*x + c))*log(-1/
2*cos(d*x + c) + 1/2))/(a^5*d*cos(d*x + c)^2 - a^5*d + (a^4*b*d*cos(d*x + c)^2 - a^4*b*d)*sin(d*x + c)), -1/4*
(6*a^2*b*cos(d*x + c)*sin(d*x + c) + 4*(a^3 - 3*a*b^2)*cos(d*x + c)^3 + 12*(a*b*cos(d*x + c)^2 - a*b + (b^2*co
s(d*x + c)^2 - b^2)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^2 - b^2)*cos(d*x + c)))
 - 6*(a^3 - 2*a*b^2)*cos(d*x + c) + 3*(a^3 - 2*a*b^2 - (a^3 - 2*a*b^2)*cos(d*x + c)^2 + (a^2*b - 2*b^3 - (a^2*
b - 2*b^3)*cos(d*x + c)^2)*sin(d*x + c))*log(1/2*cos(d*x + c) + 1/2) - 3*(a^3 - 2*a*b^2 - (a^3 - 2*a*b^2)*cos(
d*x + c)^2 + (a^2*b - 2*b^3 - (a^2*b - 2*b^3)*cos(d*x + c)^2)*sin(d*x + c))*log(-1/2*cos(d*x + c) + 1/2))/(a^5
*d*cos(d*x + c)^2 - a^5*d + (a^4*b*d*cos(d*x + c)^2 - a^4*b*d)*sin(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**3/(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.28195, size = 371, normalized size = 2.35 \begin{align*} -\frac{\frac{12 \,{\left (a^{2} - 2 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{4}} - \frac{48 \,{\left (a^{2} b - b^{3}\right )}{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}}{\sqrt{a^{2} - b^{2}} a^{4}} - \frac{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 8 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{a^{4}} + \frac{16 \,{\left (a^{2} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a^{3} - a b^{2}\right )}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )} a^{4}} - \frac{18 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 36 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 8 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{2}}{a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}}{8 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

-1/8*(12*(a^2 - 2*b^2)*log(abs(tan(1/2*d*x + 1/2*c)))/a^4 - 48*(a^2*b - b^3)*(pi*floor(1/2*(d*x + c)/pi + 1/2)
*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^2 - b^2)))/(sqrt(a^2 - b^2)*a^4) - (a^2*tan(1/2*d*x + 1/2
*c)^2 - 8*a*b*tan(1/2*d*x + 1/2*c))/a^4 + 16*(a^2*b*tan(1/2*d*x + 1/2*c) - b^3*tan(1/2*d*x + 1/2*c) + a^3 - a*
b^2)/((a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)*a^4) - (18*a^2*tan(1/2*d*x + 1/2*c)^2 - 36*b^2
*tan(1/2*d*x + 1/2*c)^2 + 8*a*b*tan(1/2*d*x + 1/2*c) - a^2)/(a^4*tan(1/2*d*x + 1/2*c)^2))/d